C. U.S. DOE, OFFICE OF TRANSPORTATION TECHNOLOGY, FUEL CELLS FOR TRANSPORTATION PROGRAM

Patrick Davis, Program Manger U.S. DOE, Energy Efficiency & Renewable Energy

Projected Fuel Cell Vehicle Performance (PNGV-Class Series Hybrid)

Projected Mileage, MPG

	Gasoline Fueled_	_Hydrogen Fueled
Urban Fuel Economy	79	101
Highway Fuel Economy	97	128
Combined	86	111

Note: Based on NREL/ADVISOR system modeling using target fuel cell efficiencies.

Near-term: Fuel flexible fuel processor

Primary focus ⇒ Advanced petroleum-based fuel

➡ Methanol, Ethanol, Natural Gas

Long-term: Renewable hydrogen

Primary focus

On-board vehicle storage

Advanced fuel is "gasoline-like," facilitates on-board processing, and is compatible with existing infrastructure. Gas-to-liquids, methanol, and ethanol may be used as blending constituents.

Program is Focused on Technical Barriers

Fuel Cells

There are significant technical and economic reasons that will keep fuel cell vehicles from making significant market penetration for 10 years.

- Technical Barriers
 - Platinum Usage
 - Durability
 - Air Systems
 - Start-up
 - Fuel Infrastructure
 - Cost

- Economic Barriers
 - Competition from other technologies
 - Fuel Cell Cost
 - Economics of fuel introduction
 - Cost of fuel

Projects and Funding by Budget Category

Systems

- Plug Power/Epyx
- IFC
- Energy Partners, AlliedSignal
- ANL

Fuel Processing

- NUVERA
- Hydrogen Burner
- McDermott
- Plug Power/UOP
- AlliedSignal
- Arcadis
- ANL, LANL, PNNL

FY00: \$6.0M FY00: \$17.0M

Stack Subsystem Components

- Energy Partners, AlliedSignal, IFC, Plug Power
- IGT, Electrochem
- 3M, SwRI/Gore, Foster-Miller
- Vairex, A.D. Little, AlliedSignal, Meruit
- Spectracorp
- LANL, LBNL

FY00: \$14.0M

Accomplishments

Systems

- •Demonstration of first gasoline to PEM experiment (1997), first 10kW gasoline system (1999).
- •IFC Hydrogen Sys.
- MeOH (GM)
 system led to Zafira
 demonstration

Fuel Processing

- Epyx gasoline fuel processors 50kW
- •PNNL microchannel steam reformer
- ANL autothermal catalyst development
- GM MeOH steam reforming.
- Los Alamos PROX.

Stack Subsystem Components

- Los Alamos low platinum electrode, reconfigured anode
- •Inst. Of Gas Tech. \$10/KW bipolar plate.
- Sensors and controls
- AlliedSignal stack demonstrated in JLG boomlift.

Office of Transportation Technologies Interest in Solid Oxide Fuel Cell Technology

- Applications of interest in transportation
 - Auxiliary Power for Heavy or Light Duty
 - Propulsion for Heavy Duty
- Recently completed study by Parsons Infrastructure and Technology indicates auxiliary power application particularly of interest.
- OTT will continue to investigate application of solidoxide fuel cell technology to transportation and support R&D where appropriate.

Barriers to transportation applications:

Heavy Duty - Cost, Maturity, Durability/Robustness Light Duty - Cost, Maturity, Start-up, Thermal Cycling

Summary

Fuel Cells

- PEM fuel cell technology leverages multiple applications to achieve significant benefits in energy efficiency.
- Major technical barriers exist that prevent the introduction of PEM technology into today's light duty transportation options.
- The Office of Transportation Technology Fuel Cell for Transportation program is addressing critical technical barriers.
- Solid Oxide technology may find a role in transportation applications, but, like PEM, has significant technical and economic barriers to overcome.